Abstract

Proton–deuteron identification at energies between 2.5MeV and 6MeV has been studied as a function of the detector working bias. Digital pulse shape analysis (DPSA) has been used to perform the separation from the two mono-energetic beams. The technique makes use of the current signal delivered by a 500μm neutron transmutation doped (NTD) silicon detector, which was setup for low-field injection. It is shown that identification of the H isotopes is better when the detector working bias is close to the depletion voltage rather than over-depletion. The presence of high frequency noise diminished the possibility of identification, however, the use of a simple triangular smoothing algorithm counteracted this.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.