Abstract

For Co2Fe6B2/MgO-based perpendicular magnetic tunneling junctions spin valves with [Co/Pd]n-synthetic-antiferromagnetic (SyAF) layers, the tunneling-magneto-resistance (TMR) ratio strongly depends on the nanoscale Fe insertion-layer thickness (tFe) between the Co2Fe6B2 pinned layer and MgO tunneling barrier. The TMR ratio rapidly increased as tFe increased up to 0.4 nm by improving the crystalline linearity of a MgO tunneling barrier and by suppressing the diffusion of Pd atoms from a [Co/Pd]n-SyAF. However, it abruptly decreased by further increasing tFe in transferring interfacial-perpendicular magnetic anisotropy into the IMA characteristic of the Co2Fe6B2 pinned layer. Thus, the TMR ratio peaked at tFe = 0.4 nm: i.e., 120% at 29 Ωμm2

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.