Abstract

BackgroundMagnetocardiography enables the precise determination of fetal cardiac time intervals (CTI) as early as the second trimester of pregnancy. It has been shown that fetal CTI change in course of gestation. The aim of this work was to investigate the dependency of fetal CTI on gestational age, gender and postnatal biometric data in a substantial sample of subjects during normal pregnancy.MethodsA total of 230 fetal magnetocardiograms were obtained in 47 healthy fetuses between the 15th and 42nd week of gestation. In each recording, after subtraction of the maternal cardiac artifact and the identification of fetal beats, fetal PQRST courses were signal averaged. On the basis of therein detected wave onsets and ends, the following CTI were determined: P wave, PR interval, PQ interval, QRS complex, ST segment, T wave, QT and QTc interval. Using regression analysis, the dependency of the CTI were examined with respect to gestational age, gender and postnatal biometric data.ResultsAtrioventricular conduction and ventricular depolarization times could be determined dependably whereas the T wave was often difficult to detect. Linear and nonlinear regression analysis established strong dependency on age for the P wave and QRS complex (r2 = 0.67, p < 0.001 and r2 = 0.66, p < 0.001) as well as an identifiable trend for the PR and PQ intervals (r2 = 0.21, p < 0.001 and r2 = 0.13, p < 0.001). Gender differences were found only for the QRS complex from the 31st week onward (p < 0.05). The influence on the P wave or QRS complex of biometric data, collected in a subgroup in whom recordings were available within 1 week of birth, did not display statistical significance.ConclusionWe conclude that 1) from approximately the 18th week to term, fetal CTI which quantify depolarization times can be reliably determined using magnetocardiography, 2) the P wave and QRS complex duration show a high dependency on age which to a large part reflects fetal growth and 3) fetal gender plays a role in QRS complex duration in the third trimester. Fetal development is thus in part reflected in the CTI and may be useful in the identification of intrauterine growth retardation.

Highlights

  • Magnetocardiography enables the precise determination of fetal cardiac time intervals (CTI) as early as the second trimester of pregnancy

  • We conclude that 1) from approximately the 18th week to term, fetal CTI which quantify depolarization times can be reliably determined using magnetocardiography, 2) the P wave and QRS complex duration show a high dependency on age which to a large part reflects fetal growth and 3) fetal gender plays a role in QRS complex duration in the third trimester

  • In recent years it has been shown that fetal magnetocardiography (FMCG) is suited for the determination of fetal cardiac time intervals (CTI) [1,2,3,4,5,6,7]

Read more

Summary

Introduction

Magnetocardiography enables the precise determination of fetal cardiac time intervals (CTI) as early as the second trimester of pregnancy. Various intervals reflecting atrial and ventricular de- and repolarization times have been identified on the basis of the waveforms of the P wave, the PR interval, the QRS complex, the T wave and others. In particular with respect to the P wave and QRS complex, one of the primary reasons for this is the dependency on the gestational age of the fetus. This is presumed to be associated with the increase in cardiac tissue mass and dimensions concomitant with fetal growth [8]. Other CTI, such as those involving the T wave, display a high degree of variance because the onset and end of this wave can often not be determined unambiguously due to its low amplitude, low frequency nature

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call