Abstract

In recent years, adhesive bonding has found its way to construction applications such as bridges. Given the harsh conditions that such structures are usually exposed to, it is necessary to account for environmental factors, particularly moisture and temperature, in the design phase. Cohesive zone modelling has attracted much attention in the last decade as a promising method to design adhesive joints. Despite this interest, the effects of moisture and thermal cycles on cohesive laws have not been investigated to the knowledge of the authors. In this paper, we present a method to directly measure the environmental-dependent cohesive laws of a structural adhesive loaded in pure Mode-I and Mode-II. Special consideration is given to overcome issues such as the time-consuming nature of moisture ingression and specimen dimensions, which could be problematic due to the size-limitations of conditioning equipment. The accuracy of this method was verified through simulation of the experiments using the finite element analysis. The effects of exposure to 95% relative humidity, immersion in saltwater and distilled water, and freeze-thaw cycles in the presence or absence of moisture were investigated. The results indicate the damaging effects of combined saltwater and freeze-thaw cycles which were clearly reflected on the shape of the cohesive laws.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.