Abstract

Quantified Boolean Formulas (QBFs) can be used to succinctly encode problems from domains such as formal verification, planning, and synthesis. One of the main approaches to QBF solving is Quantified Conflict Driven Clause Learning (QCDCL). By default, QCDCL assigns variables in the order of their appearance in the quantifier prefix so as to account for dependencies among variables. Dependency schemes can be used to relax this restriction and exploit independence among variables in certain cases, but only at the cost of nontrivial interferences with the proof system underlying QCDCL. We propose a new technique for exploiting variable independence within QCDCL that allows solvers to learn variable dependencies on the fly. The resulting version of QCDCL enjoys improved propagation and increased flexibility in choosing variables for branching while retaining ordinary (long-distance) Q-resolution as its underlying proof system. In experiments on standard benchmark sets, an implementation of this algorithm shows performance comparable to state-of-the-art QBF solvers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.