Abstract
Fuzzy linear regression (FLR) model can be thought of as a fuzzy variation of classical linear regression model. It has been widely studied and applied in diverse fields. When noise exists in data, it is a very meaningful topic to reveal the dependency between the parameter h (i.e. the threshold value used to measure degree of fit) in FLR model and the input noise. In this paper, the FLR model is first extended to its regularized version, i.e. regularized fuzzy linear regression (RFLR) model, so as to enhance its generalization capability; then RFLR model is explained as the corresponding equivalent maximum a posteriori (MAP) problem; finally, the general dependency relationship that the parameter h with noisy input should follow is derived. Particular attention is paid to the regression model using non-symmetric fuzzy triangular coefficients. It turns out that with the existence of typical Gaussian noisy input, the parameter h is inversely proportional to the input noise. Our experimental results here also confirm this theoretical claim. Obviously, this theoretical result will be helpful to make a good choice for the parameter h, and to apply FLR techniques effectively in practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.