Abstract
We propose an approach for dependence tree structure learning via copula. A nonparametric algorithm for copula estimation is presented. Then a Chow-Liu like method based on dependence measure via copula is proposed to estimate maximum spanning bivariate copula associated with bivariate dependence relations. The main advantage of the approach is that learning with empirical copula focuses on dependence relations among random variables, without the need to know the properties of individual variables as well as without the requirement to specify parametric family of entire underlying distribution for individual variables. Experiments on two real-application data sets show the effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.