Abstract

The concepts of physical dependence and approximability have been extensively used over the past two decades to quantify nonlinear dependence in time series. We show that most stochastic volatility models satisfy both dependence conditions, even if their realizations take values in abstract Hilbert spaces, thus covering univariate, multi‐variate and functional models. Our results can be used to apply to general stochastic volatility models a multitude of inferential procedures established for Bernoulli shifts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.