Abstract

Ferritic/Martensitic (F/M) steels containing 9wt.% Cr are candidates for structural and cladding components in the next generation of advanced nuclear fission and fusion reactors. Although it is known these alloys exhibit radiation-induced segregation (RIS) at grain boundaries (GBs) while in-service, little is known about the mechanism behind RIS in F/M steels. The classical understanding of RIS in F/M steels presents a mechanism where point defects migrate to GBs acting as perfect sinks. However, variation in grain boundary structure may influence the sink efficiency and these migration processes. A proton irradiated 9wt.% Cr model alloy steel was investigated using STEM/EDS spectrum imaging and GB misorientation analysis to determine the role of GB structure on RIS at different GBs. An ab initio based rate theory model was developed and compared to the experimental findings. This investigation found Cr preferentially segregates to specific GB structures. The preferential segregation to specific GB structures suggests GB structure plays a key role in the mechanism behind radiation-induced segregation, showing that not all grain boundaries in F/M steels act as perfect sinks. The study also found how irradiation dose and temperature impact the radiation-induced segregation response in F/M steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.