Abstract
Using the theory of branching processes, structural parameters such as the molecular weights of elastically active network chains (EANCs), including dangling chains, backbone EANCs and dangling chains of networks built up by the alternating polyaddition of a bi- and trifunctional monomer, are characterized. The theory is compared with viscoelastic data on polyurethane networks prepared from poly(oxypropylene)triols and diisocyanate at various initial ratios of functional groups; in the calculation, the distribution of functionalities of the triols used and the possible incompleteness of the reaction is taken into account. The comparison reveals that both the length of the backbone EANC and the length of dangling chains contribute to the total width of the retardation spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.