Abstract

Measurements of ultrasonic properties of calcaneus (heel bone) have been shown to be effective for the diagnosis of osteoporosis. However, the mechanisms underlying the interaction between ultrasound and bone are currently not well understood. A model that predicts backscatter from trabecular bone has been developed. Scattering is assumed to originate from the surfaces of trabeculae, which are modeled as long, thin, elastic cylinders with radii small compared with the ultrasonic wavelength. Experimental measurements of backscatter using broadband ultrasound centered at 500 kHz from 43 trabecular bone samples (from human calcaneus) in vitro have been performed. Microcomputed tomography has been performed on all 43 samples in order to measure microarchitectural features. The theory correctly predicts the measured dependences of backscatter on ultrasonic frequency and trabecular thickness. [Funding from the FDA Office of Womens Health is gratefully acknowledged.]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.