Abstract

Two-photon photoluminescence (TPPL) from gold nanostructures is becoming one of the most relevant tools for plasmon-assisted biological imaging and photothermal therapy as well as for the investigation of plasmonic devices. Here we study the yield of TPPL as a function of the temporal width delta of the excitation laser pulses for a fixed average power. In the delta > 1 ps regime, the TPPL yield decreases as delta is increased, while for shorter pulse widths it becomes independent of delta and, consequently, of the laser-pulse peak power. This peculiar dynamics is understood and modeled by considering that two-photon absorption in Au is a two-step process governed by the lifetime of the metastable state populated by the first photon absorption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.