Abstract

Few-layer graphene (FLG) samples prepared by two methods (chemical vapor deposition (CVD) followed by transfer onto SiO2/Si substrate and mechanical exfoliation) are characterized by combined optical contrast and micro-Raman mapping experiments. We examine the behavior of the integrated intensity ratio of the 2D and G bands (A2D/AG) and of the 2D band width (Γ2D) as a function of the number of layers (N). For our mechanically exfoliated FLG, A2D/AG decreases and Γ2D increases with N as expected for commensurately stacked FLG. For CVD FLG, both similar and opposite behaviors are observed and are ascribed to different stacking orders. For small (respectively, large) relative rotation angle between consecutive layers (θ), the values of the A2D/AG ratio is smaller (respectively, larger) and the 2D band is broader (respectively, narrower) than for single-layer graphene. Moreover, the A2D/AG ratio decreases (respectively, increases) and, conversely, Γ2D increases (respectively, decreases) as a function of N for small (respectively, large) θ. An intermediate behavior has also been found and is interpreted as the presence of both small and large θ within the studied area. These results confirm that neither A2D/AG nor Γ2D are definitive criteria to identify single-layer graphene, or to count N in FLG.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.