Abstract

We extend the work in 2017 New J. Phys. 19 103015 by deriving a lower bound for the minimum time necessary to implement a unitary transformation on a generic, closed quantum system with an arbitrary number of classical control fields. This bound is explicitly analyzed for a specific N-level system similar to those used to represent simple models of an atom, or the first excitation sector of a Heisenberg spin chain, both of which are of interest in quantum control for quantum computation. Specifically, it is shown that the resultant bound depends on the dimension of the system, and on the number of controls used to implement a specific target unitary operation. The value of the bound determined numerically, and an estimate of the true minimum gate time are systematically compared for a range of system dimension and number of controls; special attention is drawn to the relationship between these two variables. It is seen that the bound captures the scaling of the minimum time well for the systems studied, and quantitatively is correct in the order of magnitude.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.