Abstract

A criterion that allows determining the prevailing mechanism and direction of the drift of a solid spherical particle in a nonlinear wave field of a closed acoustic resonant cavity, depending on the ratio between the particle time constant, compression wave front growth time, and duration of passage of the acoustic wave, is analyzed. Particle motion is assumed to occur under the action of the Stokes force, buoyancy force, and virtual mass force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.