Abstract

Understanding the magnetic properties of the various Mn doping configurations that can be encountered in 2H-MoS2 monolayer could be beneficial for its use in spintronics. Using density functional theory plus Hubbard term (DFT + U) approach, we study how a single isolated, double- and triple-substitution configurations of Mn atoms within a MoS2 monolayer could contribute to its total magnetization. We find that the doping-configuration plays a critical role in stabilizing a ferromagnetic state in a Mn-doped MoS2 monolayer. Indeed, the Mn–Mn magnetic interaction is found to be ferromagnetic and strong for Mn in equidistant substitution positions where the separation average range of 6–11 . The strongest ferromagnetic interaction is found when substitutions are in second nearest neighbor Mo-sites of the armchair chain. Clustering is energetically favorable but it strongly reduces the ferromagnetic exchange energies. Furthermore, in term of electronic properties, we show that the Mn-doped MoS2 monolayer can change its electronic behavior from semiconductor to half-metallic depending on the doping configuration. Our results suggest that ordering the Mn dopants on MoS2 monolayer is needed to increase its potential ferromagnetism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.