Abstract

The dependence of the lamellar thickness (I) of an extended-chain single crystal (ECSC) of polyethylene (PE) crystallized at various pressures below or at the triple-point pressure (Ptri= 0.5 GPa) on the degree of super-cooling (ΔT) and the pressure have been studied. The value of I increased with the decrease in ΔT[i.e. increase in the crystallization temperature (Tc)] at a fixed pressure, similar to the well known ΔT dependence of I for a folded-chain single crystal (FCC). The observed maximum value of I, obtained at the lowest ΔT(Imax) increased with increasing pressure and the crystal changed from FCC to an extended-chain crystal (ECC) at ca. 0.25 GPa. Application of the chain-sliding diffusion theory, previously proposed by one of the authors (M.H.) was found to explain well observed significant ΔT dependence of I and the pressure dependence of Imax. It was proposed that the value of I is determined by the cessation of lamellar thickening growth at the phase transition from metastable hexagonal to stable orthorhombic. The phase transition was also studied and it is suggested to be a nucleation-controlled process of the primary nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.