Abstract

Current-voltage characteristics of amorphous silicon (a-Si) solar cells are systematically investigated as functions of the illumination intensity and ambient temperature. The principle of superposition of the short-circuit current and the dark current, which is usually assumed for crystalline silicon solar cells, is not applicable to a-Si solar cells. It is shown, that the output current of a-Si solar cells at a given illumination intensity E2mW/cm2IE2(V) is expressed by a relatively simple equation, IE2(V) = Id(V) + (E2/100) × (I100(V) — Id(V)), when the series resistance of the solar cells is negligible. Here, Id(V) is the dark current, I100(V) is the output current at an illumination of 100 mW/cm2, and V is the applied voltage. Empirical formula to describe the dependence of the current-voltage characteristics on the illumination intensity and the temperature are presented and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.