Abstract

We report on a comparative numerical study of the spin Hall conductivity in two-dimensions for three different spin-orbit interaction models; the standard k-linear Rashba model, the k-cubic Rashba model that describes two-dimensional hole systems, and a modified k-linear Rashba model in which the spin-orbit coupling strength is energy dependent. Numerical finite-size Kubo formula results indicate that the spin Hall conductivity of the k-linear Rashba model vanishes for frequency $\omega$ much smaller than the scattering rate $\tau^{-1}$, with order one relative fluctuations surviving out to large system sizes. For the k-cubic Rashba model case, the spin Hall conductivity does not depend noticeably on $\omega \tau$ and is finite in the {\em dc} limit, in agreement with experiment. For the modified k-linear Rashba model the spin Hall conductivity is noticeably $\omega \tau$ dependent but approaches a finite value in the {\em dc} limit. We discuss these results in the light of a spectral decomposition of the spin Hall conductivity and associated sum rules, and in relation to a proposed separation of the spin Hall conductivity into skew-scattering, intrinsic, and interband vertex correction contributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.