Abstract

The cascading scheme is a characteristic feature of quantum cascade (QC) lasers. It implies that electrons above threshold generate one photon per active region they successively traverse. This paper presents a study of the cascading behavior as a function of the number N of stacked active regions. Experimental results are presented for devices with N=1, 3, 6, 12, 20, 30, 45, 60, and 75 active stages. The highest optical power and lowest threshold current density are obtained for laser devices with N as high as possible. However, the lowest threshold voltage and the lowest dissipated power at laser threshold are achieved for N=3 and N=22, respectively. We further present the highest power QC lasers so far, which, using N=75 stages, show in pulsed mode peak powers of 1.4, 1.1, and 0.54 W at 50 K, 200 K, and room temperature, respectively. Finally, we also demonstrate the first few-stage (N<10) QC lasers. These QC lasers show strongly reduced operating voltages. A threshold voltage around 1.5 V is achieved for N=3. This makes the lasers very well compliant with conventional laser diode drivers, which in turn will simplify their immediate use in systems and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.