Abstract

The secondary structure content of the COOH-terminal tryptic peptide of colicin E1 has been measured by analysis of UV circular dichroism spectra as a function of pH in aqueous medium and in the presence of the nonionic detergents octyl glucoside and Triton X-100. The alpha-helical content of the peptide increased by approximately 10%, from 45-47% to 56-57%, in the presence of the nonionic detergents, but not in aqueous medium, as the pH was decreased from 4.5 to 3.5. This pH dependence of conformation is similar to that reported elsewhere for the in vitro activity and binding of this peptide. A smaller increase in helical content was observed for the peptide in aqueous medium or in Triton X-100 as the pH was decreased from 6.5 to 4.5. The letter change in helical content was not seen in octyl glucoside which was present at a detergent:peptide stoichiometry 100 times that of Triton. The mean residue ellipticity measured at 222 nm for peptide added to asolectin vesicles by a freeze-thaw treatment was slightly larger at pH 3.5, and substantially larger at pH 4.5, than found at these pH values in the detergent solutions. Changes in helical content at the former, but not the latter pH, could be attributed to peptide insertion. It appears that protonation of one or more acidic amino acid residues in the COOH-terminal region of the molecule causes a conformational change that can be attributed to an extra helical domain that is stabilized in a nonpolar environment. From the similar pH dependence of the conformational change and in vitro binding and activity, it is inferred that interaction of this domain with the membrane is essential for binding and insertion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call