Abstract
Abstract The suitability of disazodicarboxylates as quantitative cross-linking agents for the preparation of rubber vulcanizates of known degrees of cross-linking has been emphasized previously. In a recent paper we have presented the results of an investigation on the dependence of the equilibrium force of retraction on the elongation and degree of cross-linking of rubber and GR-S vulcanized with these compounds. The present paper reports an extension of these investigations of the relationship of physical properties of rubberlike materials to their network structure. Specifically, the tensile strength of azo vulcanized natural rubber has been explored as a function of the degree of cross-linking and of the extent of modification of the chain units. The tensile strengths of natural rubber specimens vulcanized to various extents using sulfur alone or sulfur in conjunction with various accelerators have been investigated in considerable detail recently by Gee, who has emphasized the critical dependence of the tensile strength on the degree of cross-linking. Values for the latter quantity, however, were deduced indirectly from the equilibrium force of retraction using the simple proportionality relationship between force of retraction and degree of cross-linking afforded by the theory of rubber elasticity. This relationship is known to be only approximately valid. Furthermore, the effects on the force of retraction of chain scission, which doubtless accompanied some of the vulcanizations to a considerable degree, were disregarded. For these reasons, Gee's values for the degrees of cross-linking occurring in his vulcanizates are only approximate estimates, and in a few cases they may be seriously in error. Nevertheless, the general character of the relationship between tensile strength and degree of cross-linking which he obtained is confirmed by our results on rubber samples quantitatively cross-linked with measured proportions of decamethylene-dismethyl azodicarboxylate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.