Abstract

Allicin was effective in decreasing the lethal concentration of Cu (2+) against various fungal strains including a plant pathogen, Fusarium oxysporum, so that the minimum fungicidal concentration (MFC) of the ion for the fungus could be reduced to 2 % of that detected without allicin. In Saccharomyces cerevisiae, Cu (2+) was not apparently taken up by cells when added alone at a non-lethal concentration, whereas the ion was efficiently incorporated into cells in the presence of allicin, as in the case of cells treated with the ion at a lethal concentration. Although allicin likely increased cellular permeability to Cu (2+) due to its promotive effect on plasma membrane phospholipid peroxidation, these cell-surface events did not result in endogenous reactive oxygen species (ROS) production, a typical toxic effect of the ion. Cu (2+) was detected in the cytoplasmic fraction of cells that had been treated with the ion at a lethal concentration, whereas the ion was entrapped in the plasma membrane fraction upon their treatment with the ion at a low concentration in combination with allicin. Cu (2+) could be solubilized from the plasma membrane fraction by a procedure for the extraction of hydrophobic proteins rather than the extraction of phospholipids, suggesting its complexation with a plasma membrane protein as a result of allicin treatment. Such a subcellular localization of Cu (2+) resulted in the selective leakage of intracellular K (+), but not in the disruptive damage on the plasma membrane, and was considered to underlie the synergistic fungicidal activity of Cu (2+) and allicin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.