Abstract

We investigate the dependence of the switching process on the perpendicular magnetic anisotropy (PMA) constant in perpendicular spin transfer torque magnetic tunnel junctions (P-MTJs) using micromagnetic simulations. It is found that the final stable states of the magnetization distribution of the free layer after switching can be divided into three different states based on different PMA constants: vortex, uniform, and steady. Different magnetic states can be attributed to a trade-off among demagnetization, exchange, and PMA energies. The generation of the vortex state is also related to the non-uniform stray field from the polarizer, and the final stable magnetization is sensitive to the PMA constant. The vortex and uniform states have different switching processes, and the switching time of the vortex state is longer than that of the uniform state due to hindrance by the vortex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.