Abstract

Single hexagonal-phase MgxZn1−xO films were deposited on glass substrates by pulsed laser deposition from a ZnO target mixed with MgO. The effect of substrate temperature on the structural, electrical and optical properties was investigated by X-ray diffraction and the transmittance measurements. It was observed that Mg incorporation lead to a clear shift of the (002) peak position to lower angle with reference to pure ZnO films due to the residual stress change with deposition temperature. It was also found that Mg doping increased the resistivity by 2 orders of magnitude and the maximum resistivity was 0.072 Ω·cm at 550 °C with the carrier concentration of 1.1 × 1019 cm−3. The visible transmittance of above 80 % was obtain in the alloy films, which optical band gap was observed to increase with the substrate temperature, attaining 3.85 eV at 600 °C. The possible mechanism was discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.