Abstract

When a shockwave, which can be generated by high velocity impact or explosive detonation, reflects from the free surface of a metal, it usually creates tensile stress inside the metal. While the tensile stress is large enough, voids nucleation, growth and coalescence happen inside the metal, causing the metal to spall. As one of the main contents of the spallation damage research, the spallation strength, which is often characterized by features of the free surface velocity history measured in spallation experiments, represents the maximum tensile stress that the material can withstand, and is actually a complex interaction among several competing mechanisms. Optimizing the spallation strengths of metals is important for their applications in the aerospace, automotive, and defense industries, and can be achieved by using the advanced manufacturing strategies, if we can know better the meaning and present analytic model of the spallation strength of metal. A large number of experiments show that the spallation strength of ductile metal is strongly dependent on the tensile strain rate, grain size and temperature of material. Based on the analysis of early spallation evolution and influence of grain size and temperature on the material, a simple analytic model of spallation strength is presented in this paper, which takes into account the effects of strain rate, grain size and temperature in materials. The applicability of this model is verified by comparing the calculated results from the model with the experimental results of spall strength of typical ductile metals such as high purity aluminum, copper, and tantalum.

Highlights

  • which can be generated by high velocity impact

  • growth and coalescence happen inside the metal

  • which is often characterized by features of the free surface velocity history measured in spallation experiments

Read more

Summary

Copper Tantalum

Material parameters and parameters of spall strength model. 至此, 基于孔洞的成核及早期增长得到了材料 层裂强度与加载拉伸应变率之间关联的解析解, 而 加载应变率不仅可以直接采用程序的数值计算结 果, 也可以根据层裂实验得到的自由面速度回跳点 前的曲线下降斜率计算给出. 虽然因层裂实验的 加载方式以及高应变率激光加载中材料细观结构 的直接影响 (靶板尺度一般只有几十到上百微米) 造成层裂强度实验数据具有一定的分散性, 但 率效应影响的变化趋势相同, 即低应变率范围内层 裂强度的率效应影响较小, 而在高应变率情况, 层 裂强度随应变率的增长而快速增加 [33−41]. 为了验 证给出的层裂强度计算方法的适用性以及可预测 性, 对 (103—109 s–1) 拉伸应变率加载范围内铝、 铜、钽三种典型延性金属的层裂强度实验结果进行 模拟, 表 1 列出了三种金属的材料参数以及模型的 计算参数. 图 1、图 2、图 3 分别给出了典型高纯延 性金属铝、铜、钽层裂强度随加载应变率变化的实 验结果和理论解析计算结果, 对比显示: 层裂强度 随着应变率的提高而提高, 低应变率下层裂强度的 率效应影响较小, 当应变率大于 106 s–1 时, 层裂强 度随着应变率快速增加; 同时, 根据本文给出的公 式得到的理论计算结果与不同材料的实验结果符 合较好, 且理论解析解具有较好的预测性, 这在当 前的研究中还是比较少见的. 目前的实验分析结果显示: 材料的初始微结 构, 如晶粒尺寸, 也是影响材料层裂强度的 1 个主 要因素. 一般而言, 材料的层裂强度随着晶粒尺 寸的增加而增加, 在较低的拉伸应变率加载下 ( < 105 s–1), 这种影响很小 [20,22,23]; 而在高拉伸应. Spall strength in both experimental and calculated results of commercial pure aluminum

Present work
This work
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call