Abstract

In this paper, the neuronal firing patterns under extracellular sinusoidal electric field (EF) are investigated based on a reduced two-compartment model with focus on the effects of morphological and internal coupling parameters. We observe that the neuron can exhibit bursting, synchronous firing and subthreshold oscillation depending on EF amplitude A and frequency f. Furthermore, neuronal firing properties change obviously over a range of morphological parameter p. As p increases, the firing region expands first and then diminishes gradually until it disappears in the observed (A, f) parameter space and the transition from bursting to synchronous firing is also markedly distinct. Meanwhile, the morphological parameter also has significant effects on the EF threshold for triggering neuronal spikes. Unlike morphological parameter, though the internal coupling conductance gc can also induce some changes in firing behavior and EF threshold, it cannot qualitatively change neuronal dynamical properties. All these results demonstrate that neuronal morphology plays a crucial role in neuronal responses to sinusoidal EF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.