Abstract

The trench gate metal oxide semiconductor field effect transistor (MOSFET) represents a prominent device architecture among the Gallium Nitride (GaN) based vertical devices currently investigated for the next generation of power electronics. A low leakage current level in off-state under high drain bias is of great importance for vertical transistors since it is a crucial feature for high breakdown voltage and device reliability. The off-state drain leakage originates from different sources in the vertical trench gate MOSFET. Besides the trench gate module, the leakage paths at the dry-etched sidewall of the lateral edge termination can also significantly contribute to the off-state drain-current. In this report, the influence of each relevant process step on the drain leakage current in off-state that is related to the lateral edge termination is investigated utilizing specific test structures on high-quality GaN epitaxial material which mimic the lateral edge termination of the MOSFET. Electrical characterization reveals the sensitivity of the leakage current to plasma-related processes. A termination technology is presented that results in low leakage current while including thick dielectric layers from plasma-assisted deposition as intended for fabrication of a field plate structure over the edge termination.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call