Abstract

It is known that high temperature tensile strength increases with increasing Cr content in Cr containing heat resistant steels. Recently, however, it was found that long-term creep strength decreased with increasing Cr content in the heat resistant steels containing 8.5-12%Cr. In this study, precipitation behavior of M23C6 carbide and the Z phase after creep tests was investigated using two kinds of high Cr ferritic steels (9Cr and 10.5Cr). As a result, 10.5Cr steel exhibited larger average particle size of M23C6 than 9Cr steel irrespective of creep stress levels, but the amount of M23C6 carbide was almost the same in both steels. On the other hand, the amount of the Z phase became large in 10.5Cr steel compared with 9Cr steel. These experimental results indicate that high level of Cr content accelerates precipitation and coalescence rate of both M23C6 carbide and the Z phase, resulting in degradation of long term creep strength in 10.5 Cr steel compared to 9Cr steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.