Abstract

In this study, one-dimensional stochastic Korteweg–de Vries equation with uncertainty in its forcing term is considered. Extending the Wiener chaos expansion, a numerical algorithm based on orthonormal polynomials from the Askey scheme is derived. Then dependence of polynomial chaos on the distribution type of the random forcing term is inspected. It is numerically shown that when Hermite (Laguerre or Jacobi) polynomial chaos is chosen as a basis in the Gaussian (Gamma or Beta, respectively) random space for uncertainty, the solution to the KdV equation converges exponentially. If a proper polynomial chaos is not used, however, the solution converges with slower rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.