Abstract
The structure and propagation of the plasma in air breakdown driven by high-power microwave have attracted great interest. This paper focuses on the microwave amplitude and frequency dependence of plasma formation at atmospheric pressure using one two-dimensional model, which is based on Maxwell’s equations coupled with plasma fluid equations. In this model, we adopt the effective electron diffusion coefficient, which can describe well the change from free diffusion in a plasma front to ambipolar diffusion in the bulk plasma. The filamentary plasma arrays observed in experiments are well reproduced in the simulations. The density and propagation speed of the plasma from the simulations are also close to the corresponding experimental data. The size of plasma filament parallel to the electric field decreases with increasing frequency, and it increases with the electric field amplitude. The distance between adjacent plasma filaments is close to one-quarter wavelength under different frequencies and amplitudes. The plasma propagation speed shows little change with the frequency, and it increases with the amplitude. The variations of plasma structure and propagation with the amplitude and frequency are due to the change in the distribution of the electric field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.