Abstract

Abstract A new set of tobacco mutants was obtained by selfing a single variegated plant which emerged in a seed lot of Nicotiana tabacum var. Consolation. The seeds obtained from this mutant give rise to four phenotypes: variegated, yellow, yellow-green, and green seedlings. The green, yellow-green and yellow characters are due to two interdependent nuclear gene factors. The yellow-green phenotype is the homozygous (aabb) true breeding condition, whereas the green and the yellow phenotype are heterozygous (AaBb) with respect to both nuclear factors, the difference in the yellow and green phenotype being the addition of a labile gene factor pair, Cc, in the yellow condition. If photorespiration is measured as the Warburg effect or as 180 2-consumption by mass spectrometry it appears that the heterozygous green phenotype is the defective condition with high photorespiration. The three phenotypes differ with respect to chlorophyll content and photosynthetic unit sizes, the photosynthetic unit size in the yellow phenotype being approxi­ mately 1/10 of that of the green type. The gene expression for photorespiration (measured as 180 2-uptake for example) in the heterozygous green type is suppressed by the addition of the labile gene factor pair Cc in heterozygous condition which leads to the yellow phenotype. In the yellow and green phenotype the photosynthetic unit size is different but not the ratio of photosys­ tem I/photosystem II activity. Moreover, from the present studies it appears that the Warburg effect i. e. an increase of photo­ synthetic rate upon anoxia, can only partly be due to an inhibition of ribulose 1,5-biphosphate oxygenase or glycolate oxidase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call