Abstract
Correlated neural activity has been observed at various signal levels (e.g., spike count, membrane potential, local field potential, EEG, fMRI BOLD). Most of these signals can be considered as superpositions of spike trains filtered by components of the neural system (synapses, membranes) and the measurement process. It is largely unknown how the spike train correlation structure is altered by this filtering and what the consequences for the dynamics of the system and for the interpretation of measured correlations are. In this study, we focus on linearly filtered spike trains and particularly consider correlations caused by overlapping presynaptic neuron populations. We demonstrate that correlation functions and statistical second-order measures like the variance, the covariance, and the correlation coefficient generally exhibit a complex dependence on the filter properties and the statistics of the presynaptic spike trains. We point out that both contributions can play a significant role in modulating the interaction strength between neurons or neuron populations. In many applications, the coherence allows a filter-independent quantification of correlated activity. In different network models, we discuss the estimation of network connectivity from the high-frequency coherence of simultaneous intracellular recordings of pairs of neurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.