Abstract

Depending on the alloy composition, intercritical annealing may provide different phases in the microstructure. For low-alloyed dual-phase (DP) steels it is usually ferrite and martensite, while for medium-Mn steels retained austenite is also formed. In a present study, a wide intercritical temperature range was applied to a 5% Mn steel to investigate possible microstructure combinations: ranging from fully ferritic, through ferritic-austenitic, multiphase, to fully martensitic, which were next investigated in terms of mechanical properties to clarify the behavior of this type of material. The obtained results together with technological issues and economic indicators were next compared to mechanical properties of typical DP steels in order to assess the possibility of replacing this material in car production. The mechanical properties were evaluated using static tensile and hardness tests. The phase composition was determined qualitatively and quantitatively using dilatometry, X-ray diffraction measurements, and electron backscatter diffraction analysis. The results suggest that both initial austenite and martensite fractions have a decisive influence on the yielding and elongation of steel; however, the tensile strength depends mainly on the sum of martensite initially present in the microstructure and the strain-induced martensite formed from the plastically deformed austenite regardless of the initial retained austenite—martensite ratio. The results indicate superior total elongation of medium-Mn steels reaching 30% compared to DP steels with a similar strength level in the range between 900 and 1400 MPa. However, medium-Mn steels could be a significant competitor to dual phase steels only if some technological problems like discontinuous yielding and serrations are significantly reduced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.