Abstract

The effect of the time delay between the picosecond Raman pump and the femtosecond Stokes probe pulse on the Raman gain line shape in femtosecond broadband stimulated Raman spectroscopy (FSRS) is presented. Experimental data are obtained for cyclohexane to investigate the dependence of the FSRS line shape on this time delay. Theoretical simulations of the line shapes as a function of the time delay using the coupled wave theory agree well with experimental data, recovering broad line shapes at positive time delays and narrower bands with small Raman loss side wings at negative time delays. The analysis yields the lower bounds of the vibrational dephasing times of 2.0 ps and 0.65 ps for the 802 and 1027 cm(-1) modes for cyclohexane, respectively. The theoretical description and simulation using the coupled wave theory are also consistent with the observed Raman gain intensity profile over time delay, reaching the maximum at a slightly negative time delay (approximately -1 ps), and show that the coupled wave theory is a good model for describing FSRS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call