Abstract

It is observed that the radiative recombination rate in InGaN-based light-emitting diode decreases with lattice temperature increasing. The effect of lattice temperature on the radiative recombination rate tends to be stable at high injection. Thus, there should be an upper limit for the radiative recombination rate in the quantum well with the carrier concentration increasing, even under the same lattice temperature. A modified and easily used ABC-model is proposed. It describes that the slope of the radiative recombination rate gradually decreases to zero, and further reaches a negative value in a small range of lattice temperature increasing. These provide a new insight into understanding the dependence of the radiative recombination rate on lattice temperature and carrier concentration in InGaN-based light-emitting diode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.