Abstract

A cylindrical Langmuir probe in a low-density, collisionless plasma (density ~108 cm−3, electron temperature 0.2 eV) has been scanned radially through the presheath region to determine the effect of distance from the axis on the current-voltage characteristic. In the ion part of the probe characteristic, the collected ion current decreases with distance from the axis as a consequence of ion acceleration by the presheath. The part of the ion current from charge-exchange collisions remains relatively constant. In the electron part of the probe characteristic, the collected current decreases with distance from the axis, consistent with the existence of a small potential barrier from the presheath between the axis and the probe. The electron temperature from the slope of the probe characteristic is nearly constant across the presheath region. The plasma potential from the Langmuir probe characteristic is also nearly constant, indicating that the probe analysis finds the plasma potential on the axis, even when the probe is not on the axis. The plasma potential from an emissive probe shows an approximately parabolic profile. The plasma potential from the emissive probe and the Boltzmann relation give nearly the same density profile in the presheath that is obtained from the Langmuir probe data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call