Abstract

The properties of ion channels formed in membranes by polyene antibiotics of various chemical structure of hydrophilic and hydrophobic chains are investigated. Small differences in a hydrophylic chain with a changed number of hydroxyl and carbonyl groups significantly influence the values of conductivity and selectivity of the polyene channel. The greater number of double bonds in a hydrophobic part of polyene molecules leads to the higher biological activity of antibiotics. Measurement of anion–cationic selectivity of the channels formed by polyenes showed that anionic selectivity, as well as conductivity of channels, decreases among antibiotics: amphotericin B, nystatin, candidin, mycoheptin, and levorin. The study of physical and chemical properties of the single and hybrid ion channels on the bilayer lipid membranes in the presence of polyene antibiotics makes possible to create a theoretically reasonable recommendation for the targeted synthesis of new antibiotics with the desired properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.