Abstract

AbstractAs a typical water‐soluble polymer, ultra‐high molecular weight (UHMW) partially hydrolyzed polyacrylamide (HPAM) has been widely used in various industries as thickeners or rheology modifiers. However, precise determination of its critical physical parameters such as molecular weight, radius of gyration (Rg) and hydrodynamic radius (Rh) were less documented due to their high viscosity in aqueous solution. In this work, the molecular structure of five UHMW‐HPAM samples with different MW was elucidated by 1H and 13C NMR spectroscopy, and their solution properties were characterized by both static and dynamic light scattering. It is found that all the second virial coefficient (A2) values are positive and approaching zero, indicating of a good solvent of 0.5 M NaCl for UHMW‐HPAM. The weight‐average molecular weight (Mw) dependence of molecular size and intrinsic viscosity [η] for these series of HPAM polymers with MW ranging from 4.81 to 15.4 × 106 g·mol−1 can be correlated as Rg = 3.52 × 10−2Mw0.51, Rh = 1.97 × 10−2Mw0.51, and [η] = 6.98 × 10−4 Mw0.91, respectively. These results are helpful in understanding the relationship between molecular weight and coil size of HPAM polymers in solution, and offer references for quick estimation of molecular weight and screening of commercial UHMW‐HPAM polymers for specific end‐users.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call