Abstract

A circular interdigitated electrode (IDE) array for label-free and real-time impedance monitoring of cell growth was fabricated and evaluated. Both the width and spacing of fingers were 50 μm, and the exposed sensing area of the circular IDE was 1.3~3.4 mm. The electrical characteristics of the fabricated circular IDE were modeled as an equivalent circuit, and the values of the circuit parameters extrapolated from the fitting to the measured spectra in different concentrations of NaCl or sensing areas of the circular IDE were analyzed. During cell growth, the resistance of cells extrapolated from the fitting was increased and the maximum rate of change in the real part of the impedance was observed at frequencies of 10 to 22 kHz. The normalized real part of the impedance measured at 10 kHz during cell growth was increased more with decreasing the electrode sensing area, albeit the number of cells to be investigated showed a corresponding increase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call