Abstract

In order to study the dependence of the grain boundary character distributions (GBCD) on the grain size, annealing treatment was carried out on 304 austenitic stainless steel with different initial grain sizes. The evolution of the GBCD was analysed by electron backscatter diffraction. The experimental results showed that abnormal grain growth (AGG) occurred when grain size was small. With a smaller initial grain size, the number density of abnormally large grains and the fraction of low-Σ CSL boundaries increased but the size of abnormally large grains decreased and the random boundaries presented a continuous network. With a larger initial grain size, the fraction of low-Σ CSL boundaries also increased as well as the size of abnormally large grains but the number density of abnormally large grains decreased and the connectivity of random boundary network was disrupted by low-Σ CSL boundaries, especially Σ3n (n = 1, 2, 3) boundaries. However, with a very large initial grain size, normal grain growth (NGG) occurred, which had no effect on the fraction of low-Σ CSL boundaries and the connectivity of random boundary network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.