Abstract
We employ a QMD transport model to study the influence of the isospin dependent part of the nuclear matter equation of state on the dynamics of heavy-ion collisions at intermediate energies. Parametrization of the in-medium dependence of the nucleon–nucleon elastic cross-sections, as predicted by microscopical models, are used. The sensitivity of flow observables to various parametrizations of the isospin dependent part of the equation of state (symmetry energy) is studied. The experimentally observed splitting of the elliptic flow values in Ru+Zr and Zr+Ru at incident energies of 400 MeV is shown to be due to, to an equal extent, density dependence of the microscopic nucleon–nucleon cross-section and symmetry energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.