Abstract

Numerically simulated results are presented for a family of rectangular cylinders with aspect ratios r1 (=b/a with height a and width b) ranging from 0.1 to 1.0 (square cylinder) to gain a better insight into the dependency of the aerodynamic characteristics on the operational dimensionless parameters, namely Reynolds number Re and aspect ratio r1. This work describes the flow from a long cylinder of rectangular cross-section placed parallel to a wall and subjected to a uniform shear flow. The flow is investigated in the laminar Reynolds number range (based on the incident stream at the cylinder upstream face and the height of the cylinder) at cylinder to wall gap height 0.5 times the cylinder height. The governing unsteady Navier-Stokes equations are solved numerically through a finite volume method on a staggered grid system using QUICK scheme for con- vective terms. The resulting equations are then solved by an implicit, time-marching, pressure correction-based SIMPLE algorithm for Reynolds number up to 1,000. The critical Reynolds numbers at which vortex shedding from the cylinder is started are specified for both the cases: far from the wall and near to the wall. It is reported that the vortex shedding from the rectangular cylinder of lower aspect ratio r1(≤ 0.25) becomes regular and insensitive to the Reynolds number, while the aerodynamic characteristics of the rectangular cylinders with higher aspect ratio r1(≥ 0.5) are strongly dependent on the Reynolds number.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.