Abstract

Cancer-associated fibroblasts play a crucial role in accelerating tumor progression, but there is a knowledge gap regarding the chemotactic signal activated in a tumor microenvironment. In this study, the expression of type IV collagen was knocked down using a lentiviral-mediated short hairpin RNA strategy. Although there was no obvious effect on cell growth in vitro, silencing the Col4-α1 gene decreased the tumorigenicity of B16F10 in C57BL/6 mice, which was accompanied by a reduction in the infiltration of alpha-smooth muscle actin-positive (α-SMA+) fibroblasts. Silencing the Col4-α1 gene or disrupting integrin engagement by blocking the antibody reduced the expression of platelet-derived growth factor A (PDGF-A), a potent chemotactic factor for fibroblasts. Furthermore, ectopic expression of the autoclustering integrin mutant significantly stimulated PDGF-A expression in murine B16F10 and human U118MG and Huh7 cells. PDGF-A-specific sh-RNA and neutralizing anti-PDGF-A antibody effectively inhibited the transwell migration of fibroblasts. Adding recombinant PDGF-A back to shCol cell-conditioned media restored the fibroblast-attraction ability indicating that PDGF-A is a major chemotactic factor for fibroblasts in the current study model. The integrin-associated PDGF-A production correlated with the activation of Src and ERK. High type IV collagen staining intensity colocalized with elevated PDGF-A expression was observed in tumor tissues obtained from hepatoma and glioma patients. The integrin signal pathway was activated by collagen engagement through Src and ERK, leading to enhanced PDGF-A production, which serves as a key regulator of fibroblast recruitment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.