Abstract
We examine the effects of disorder on propagation loss as a function of group velocity for W1 photonic crystal (PhC) waveguides. Disorder is deliberately and controllably introduced into the photonic crystal by pseudo-randomly displacing the holes of the photonic lattice. This allows us to clearly distinguish two types of loss. Away from the band-edge and for moderately slow light (group velocity c/20-c/30) loss scales sub-linearly with group velocity, whereas near the band-edge, reflection loss increases dramatically due to the random and local shift of the band-edge. The optical analysis also shows that the random fabrication errors of our structures, made on a standard e-beam lithography system, are below 1 nm root mean square.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.