Abstract
We study the electron and hole energy states for a complete three-dimensional (3D) model of semiconductor nano-scale quantum rings in an external magnetic field. In this study, the model formulation includes: (i) the position dependent effective mass Hamiltonian in non-parabolic approximation for electrons, (ii) the position dependent effective mass Hamiltonian in parabolic approximation for holes, (iii) the finite hard wall confinement potential, and (iv) the Ben Daniel–Duke boundary conditions. To solve this 3D non-linear problem, we apply the non-linear iterative method to obtain self-consistent solutions. We find a non-periodical oscillation of the energy band gap between the lowest electron and hole states as a function of external magnetic fields. The result is useful in describing magneto-optical properties of the nano-scale quantum rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.