Abstract

We perform micromagnetic simulations to study the switching barriers in square artificial spin ice systems consisting of elongated single domain magnetic islands arranged on a square lattice. By considering a double vertex composed of one central island and six nearest neighbor islands, we calculate the energy barriers between two types of double vertices by applying the string method. We investigate by means of micromagnetic simulations the consequences of the neighboring islands, the inhomogeneities in the magnetization of the islands and the reversal mechanisms on the energy barrier by comparing three different approaches with increasing complexity. The micromagnetic models, where the string method is applied, are compared to the currently common method, the mean barrier approximation. Our investigations indicate that a proper micromagnetic modeling of the switching process leads to significantly lower energy barriers, by up to 35% compared to the mean-barrier approximation, so decreasing the expected average life time up to seven orders of magnitude. Hereby, we investigate the influence of parallel switching channels and the conceptional approach of using a mean-barrier to calculate the corresponding rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call