Abstract

AbstractPulsed double electron–electron resonance (DEER) provides pairwise P(r) distance distributions in doubly spin labeled proteins. We report that in protonated proteins, P(r) is dependent on the length of the second echo period T owing to local environmental effects on the spin‐label phase memory relaxation time Tm. For the protein ABD, this effect results in a 1.4 Å increase in the P(r) maximum from T=6 to 20 μs. Protein A has a bimodal P(r) distribution, and the relative height of the shorter distance peak at T=10 μs, the shortest value required to obtain a reliable P(r), is reduced by 40 % relative to that found by extrapolation to T=0. Our results indicate that data at a series of T values are essential for quantitative interpretation of DEER to determine the extent of the T dependence and to extrapolate the results to T=0. Complete deuteration (99 %) of the protein was accompanied by a significant increase in Tm and effectively abolished the P(r) dependence on T.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.