Abstract
Observations are reported of crack propagation in columnar-grain, polycrystalline ice subjected to constant compressive load applied perpendicular to the long axis of the columns. About three-quarters of the cracks observed were transcrystalline and the remainder occurred at grain boundaries. The plane of the cracks tended to be parallel to the direction of the applied load. Transcrystalline cracks tended to propagate either parallel or perpendicular to the basal plane. At least two-thirds of the grain boundary cracks were associated with boundaries for which the slip plane of one or both of the adjacent grains was close to parallel or perpendicular to the boundary. It is shown that the observations are consistent with the hypothesis that a minimum number of independent slip systems are required for a grain to conform to an arbitrary deformation under constraints imposed by neighboring grains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.