Abstract

The resting potential in the squid axon has been measured at various concentrations of Cl, K, Na, and Ca ions. The results of these measurements are compared with the Goldman-Hodgkin-Katz (GHK) equation and a modified constant field equation. This modified equation was derived by including currents carried by divalent ions and the effects of the unstirred layer and the periaxonal space. It is shown that, although the GHK equation can fit the V vs. [K]o data well, it has difficulty explaining the observed dependence of V on [Na]o when the axon is bathed in K-free artificial sea water. The use of the modified constant field equation removes this difficulty.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.